
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.15, Issue No 2, 2025

879

HYBRID NATURE-BASED AND ENSEMBLE MACHINE LEARNING

MODEL FOR SOFTWARE BUG FORECASTING
1Shaik Mohammad Azaruddin, MCA Student, Department of MCA

2 K Kumara Swamy, M.Tech, Assistant Professor, Department of MCA

12Dr KV Subba Reddy Institute of Technology, Dupadu, Kurnool

https://doi.org/10.51470/ijcnwc.2025.v15.i02.pp879-888

ABSTRACT

Due to its significance in fixing the defects

found in software testing, the maintenance

process of software systems has drawn the

attention of researchers in software development

systems. BRs include information such as the

bug's description, status, reporter, assignee,

priority, and severity, among other details.

Because the quantity of BRs grows

exponentially, personally analysing them all to

find system problems becomes an arduous and

time-consuming ordeal, which is the primary

challenge of this approach. Consequently, it is

advisable to use an automated solution. The

majority of the ongoing research is devoted to

automating this process from various angles,

such as determining the bug's importance or

severity. The flaw, however, is a multi-class

categorisation challenge, and they failed to

account for this. This study presents a novel

prediction model that can analyse BRs and

accurately forecast the bug's existence, therefore

resolving the issue. A combination of machine

learning and natural language processing (NLP)

is used to build an ensemble algorithm in the

suggested model. An open-source dataset for

two online software bug repositories (Eclipse

and Mozilla) is used to mimic the suggested

paradigm. This dataset has six categories:

Program Anomaly, GUI, Network or Security,

Configuration, Performance, and Test-Code.

With an accuracy of 90.42% without text

augmentation and 96.72% with text

augmentation, the suggested model outperforms

the majority of current models in the

simulations.

I. INTRODUCTION

The purpose of testing in software engineering is

to determine whether a system satisfies the

criteria specified by the stakeholders. This

assessment process includes looking for errors

or failures to satisfy these objectives [1]. This

procedure ensures that any issues found after

testing has ended are addressed during the

maintenance period. Furthermore, software

developers are more likely to deploy flawed

software as the product's complexity and size

grow [2], and the likelihood of errors in software

projects increases. As a result, consumers

document the issues they've encountered [2].

When software has a defect that causes it to act

improperly or provide inaccurate results, it is

called a bug [3]. The reporter's comments are

sent to the BTS via a bug report. The Eclipse

repository contains sample problem reports, as

seen in Figure 1. 1 There are many pieces of

information that go into a bug report. These

include the problem's ID, its status (closed or

opened), a description of the issue, the program

involved, details on how to recreate the bug,

who reported the bug, and the developer

responsible for fixing it [4].

One way to look at a bug report is as a conduit

for communicating the issue to the programmers

working on the solution [5]. After receiving a

problem report, the developer follows a certain

procedure known as the bug management

process [6] to fix the issue. When consumers

encounter an issue with a published software

product and file a complaint to the bug

management system, this procedure begins.

Developers are then tasked with investigating

this problem report. When a developer

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.15, Issue No 2, 2025

880

discovers the source and location of a defect

before other developers do, they are the ones

who repair it. Following the bug's resolution,

the tester verifies that the problem has not

resurfaced by checking the bug scenario. If it

hasn't, the status of the bug report is updated to

Verified. At long last, the reporter gets a notice

[6].

There are several stages that make up a software

bug's life cycle. Hence, the bug report life cycle

is shown in Figure 2. According to this

diagram, there are three stages to a bug's life

cycle: management, triage, and localisation.

From the moment a user reports an issue until

the developer is assigned, everything that

happens during this period is known as bug

management. next the prioritisation and

assignment of appropriate developers to fix

submitted reports, the next process is bug triage.

Phase three, bug localisation, is responsible for

transitioning the bug status from resolved to

verified and finally closed [7]. The exponential

growth in the volume of reported bugs is the

biggest obstacle to overcome throughout this life

cycle since handling them manually is a

painstaking, complicated, and time-consuming

process [8]. To solve this problem, researchers

sort the reports into three primary groups, each

with its own set of subgroups [9], and then

extract relevant data to help speed up and

simplify the maintenance step. These types of

problem reports are sorted according to priority,

severity, and kind [9]. The majority of research

sorts reported bugs according to priority or

severity.

This research's literature study reveals that

different classification algorithms categorise bug

reports based on different criteria; nonetheless,

there is a dearth of highly accurate bug

classification models that are based on nature.

So, to fill this need, this research introduces an

ensemble machine learning approach for bug

reporting that is based on nature for bug

prediction.

The goal of this study is to automate the process

of predicting the sorts of bugs in software

systems via the use of natural language

processing (NLP), machine learning (ML), and

text mining methods. Instead of spending time

manually locating bugs, the model may

accomplish it quickly during the maintenance

phase by using bug localisation methods. Figure

3 shows a high-level perspective of how a bug

report is used to anticipate future issues.

II. LITERATURE SURVEY

"Software testing techniques: A literature

review," by M. A. Jamil, M. Arif, N. S. A.

Abubakar, and A. Ahmad,

Quality assurance of created software has

reached new heights due to the rising complexity

of modern software applications and the intense

competition in the market. Given the

importance of software testing both before and

after development, it is imperative that the

Software Development Lifecycle include more

effective and efficient procedures and

approaches to ensure quality software testing.

The goal of this article is to talk about current

and new testing methods for better quality

assurance.

The "Deep neural network-based severity

prediction of bug reports" was written by W. Y.

Ramay, Q. Umer, X. C. Yin, C. Zhu, and I.

Illahi.

The maintenance phase is a crucial part of

developing software. In order to fix software

issues, developers use issue tracking systems.

Such issue tracking systems allow users to report

issues and assign severity ratings to them. The

urgency with which an issue should be fixed is

determined by its severity. Timely resolution of

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.15, Issue No 2, 2025

881

critical problems is facilitated for developers.

Manual severity evaluation, on the other hand, is

time-consuming and prone to error. In this

research, we provide an automated method for

predicting the severity of bug reports that is

based on deep neural networks. After collecting

bug reports, the first step is to preprocess the

text using natural language processing

algorithms. Our second step is to give each bug

report a score based on how they felt about it.

Next, we construct a vector for every bug report

that has been preprocessed. Finally, a classifier

based on a deep neural network is used to

estimate the severity of each bug report. This

classifier is fed the created vector together with

the emotion score of each report. Additionally,

we assess the suggested method using bug report

history data. The cross-product findings seem

like the suggested method beats the state-of-the-

art methods. It enhances the f-measure by an

average of 7.90%.

"A technique of non-bug report identification

from bug report repository," by J. Polpinij

(2013) Artif. Robot for Life

Studies on bug reports often deal with the

problem of misclassification, which occurs when

non-bug reports are filtered out of the repository

after being identified. The time and effort spent

triaging and fixing issues increases as a result of

having to filter out irrelevant complaints, which

in turn loses time in discovering real bug reports.

Consequently, this matter has been thoroughly

investigated and is discussed below. In order to

address this issue, this research suggests a way

to automatically detect reports that do not

include bugs in the bug report repository by

using classification algorithms. Here, three

things are taken into account. To begin,

unigram and CamelCase are used as bug report

features, with CamelCase words being utilised

for feature expansion. We then analyse five

different word weighting strategies to find the

one that works best for this job. One class

support vector machine (SVM) based on

Schölkopf technique, binary-class support vector

machine (SVM), and support vector data

description (SVDD) are the major methods used

for modelling non-bug report identifiers.

Following recall, precision, and F1 testing, the

results show that the bug report repository can

efficiently identify reports that do not include

bugs. After comparing our results to those of

other prominent research, our findings may be

considered acceptable. Specifically, we found

that the Scölkopf approach and SVDD methods

performed the best when using non-bug report

IDs with tf-igm and modified tf-icf weighting

schemes.

S. Adhikarla, "Bug report routing using

automated bug classification," Juris Doctor

thesis, Faculty of Arts and Sciences, Department

of Computer Science, Linköping University,

Linköping, Sweden, 2020.

As software technology advances, businesses

increasingly look to automated solutions as a

means to save costs and increase efficiency. The

software business has seen enormous

development in automated solutions, thanks to

the substantial machine learning research that

has supported them. While there has been a lot

of study into automated bug categorisation, there

is always a need for more accurate approaches

that take into account the newly acquired data.

After reading the defect report, an automatic bug

classifier will determine which department or

individual is responsible for fixing the issue.

Typically, a bug report will include an

unstructured text box where the issue may be

explained in depth. The topic of data extraction

from these types of text fields has been

extensively studied. In order to extract two

characteristics from the bug report's unstructured

text fields, this thesis use a topic modelling

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.15, Issue No 2, 2025

882

approach called Latent Dirichlet Allocation

(LDA) and a numerical statistic called Term

Frequency - Inverse Document Frequency (TF-

IDF). By merging the TF-IDF and LDA

features, a third set of features was generated.

Over the course of this thesis, the data utilised

undergoes a transformation in its class

distribution. As a feature, the age of the bug

report was incorporated to examine the influence

of time on the prediction. Along with the LDA

and TF-IDF characteristics, this feature's

significance was investigated in this research.

Three distinct classification models—DO-

probit, dense neural networks, and multinomial

logistic regression—were trained using these

produced feature vectors as predictors. The

accuracy and F1-score of the classifiers'

predictions for which department should address

an issue were assessed. Predictions made by a

Support Vector Machine (SVM) with a linear

kernel served as the reference point for this

comparison.

III. SYSTEM ANALYSIS AND DESIGN

EXISTING SYSTEM

Kukkar and Mohana [10] address the issue of

misclassification of bug reports—which impacts

the overall effectiveness of the prediction

process—by using text mining, natural language

processing, and machine learning approaches to

categorise bug and non-bug reports. Bigram and

TF-IDF are used for feature selection in this

model. But as the dataset changes, the KNN

algorithm's performance in this model also

changes.

When it comes to bug reporting, some

researchers have various criteria. In [11],

researchers use support vector machines

(SVMs), naïve bayes (NBs), and random trees

(RTs) as machine learning techniques to

categorise newly reported bugs as either

perfective (requiring significant upkeep) or

corrective (requiring defect correction). With a

score of 93.1%, SVM proved to be the most

accurate method.

A popular model known as Orthogonal Defect

Classification (ODC) was established by

researchers to aid in the software engineering

process [12]. Several analytical approaches for

test process analysis and software development

are available in ODC, which contains eight

orthogonal properties to characterise software

problems [51]. Using ODC, we may extract

useful information from faults, which aids in

software engineering process diagnostics, and

gives us new insights [13]. To categorise bug

reports in accordance with ODC, the writers in

[13] use machine learning methods. A total of

4096 bug reports tagged with ODC were used in

their investigation. They do, however, come to

the conclusion that bug reports alone are

insufficient for automating the ODC properties.

Hirsch and Hofer [14] used three categories—

concurrency, memory, and semantic bugs—to

categorise each newly reported problem. Using

369 reports of bugs, they achieved a maximum

mean recall of 0.72 and a precision of 0.74.

DISADVANTAGES

• An existing system is not hybrid deep

learning detection policy to improve the

efficiency and effectiveness of Bug

Report Generation.

• An existing system never used Nature-

Based Ensemble Machine Learning Bug

Prediction Model which is more

accurate and efficient.

PROPOSED SYSTEM

• It offers a review of many foundational ML

techniques for automated categorisation of bug

reports based on nature.

• It suggests a method for automatically

predicting bugs based on nature using bug

reports and an ensemble machine learning

methodology.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.15, Issue No 2, 2025

883

• The suggested approach incorporates a text

augmentation strategy for nature-based issue

prediction using bug reports. As far as we are

aware, this is the first ensemble machine

learning method to use a text augmentation

methodology to forecast the kind of defects in

bug reports.

• The findings of the proposed technique's

assessment on a benchmark dataset indicate that

the ensemble machine learning approach is

effective in predicting bugs based on nature

from reports of bugs.

Advantages

• The proposed algorithm aims to enhance

nature-based bug prediction by using

several machine learning (ML) base

classifiers and training them using a

benchmark dataset.

• The proposed algorithm integrates

machine learning, NLP, and text-mining

techniques. Their algorithm uses 504

bug reports and classifies them into four

classes: assignment/initialization,

external interface, internal interface, and

other. This model achieved 73.70% of

accuracy.

SYSTEM ARCHITECTURE

IV. IMPLEMENTATION

Modules

Service Provider

A valid username and password are required for the

Service Provider to access this module. Following a

successful login, he will have access to many activities,

including the ability to browse data sets and perform

train and test. Check out the Bar Chart for Trained and

Tested Accuracy, Check Out the Results for Trained and

Tested Accuracy, See the Type of Bug Report, the Ratio

of Bug Reports, Download Data Sets for Prediction, and

See the Results of the Ratio of Bug Reports, See Who Is

Online From Afar.

View and Authorize Users

The admin can get a complete rundown of all

registered users in this section. Here, the

administrator may see the user's information

(name, email, and address) and grant them

access.

Remote User

A total of n users are present in this module.

Before beginning any actions, the user needs

register. Following registration, the user's

information will be entered into the database.

Following a successful registration, he must use

his password and authorised user name to log in.

Following a successful login, the user will be

able to see their profile, predict the kind of bug

report, and register and log in.

ALGORITHM

Logistic regression Classifiers

The relationship between a collection of

independent (explanatory) factors and a

categorical dependent variable is examined

using logistic regression analysis. When the

dependent variable simply has two values, like 0

and 1 or Yes and No, the term logistic regression

is used. When the dependent variable contains

three or more distinct values, such as married,

single, divorced, or widowed, the technique is

sometimes referred to as multinomial logistic

regression. While the dependent variable's data

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.15, Issue No 2, 2025

884

type differs from multiple regression's, the

procedure's practical application is comparable.

When it comes to categorical-response variable

analysis, logistic regression and discriminant

analysis are competitors. Compared to

discriminant analysis, many statisticians believe

that logistic regression is more flexible and

appropriate for modelling the majority of

scenarios. This is due to the fact that, unlike

discriminant analysis, logistic regression does

not presume that the independent variables are

regularly distributed.

Both binary and multinomial logistic regression

are calculated by this software for both category

and numerical independent variables. Along

with the regression equation, it provides

information on likelihood, deviance, odds ratios,

confidence limits, and quality of fit. It does a

thorough residual analysis that includes

diagnostic residual plots and reports. In order to

find the optimal regression model with the

fewest independent variables, it might conduct

an independent variable subset selection search.

It offers ROC curves and confidence intervals on

expected values to assist in identifying the

optimal classification cutoff point. By

automatically identifying rows that are not

utilised throughout the study, it enables you to

confirm your findings.

Naïve Bayes

The supervised learning technique known as the

"naive bayes approach" is predicated on the

straightforward premise that the existence or

lack of a certain class characteristic has no

bearing on the existence or nonexistence of any

other feature.

However, it seems sturdy and effective in spite

of this. It performs similarly to other methods of

guided learning. Numerous explanations have

been put forward in the literature. We

emphasise a representation bias-based

explanation in this lesson. Along with logistic

regression, linear discriminant analysis, and

linear SVM (support vector machine), the naive

bayes classifier is a linear classifier. The

technique used to estimate the classifier's

parameters (the learning bias) makes a

difference.

Although the Naive Bayes classifier is

commonly used in research, practitioners who

want to get findings that are useful do not utilise

it as often. On the one hand, the researchers

discovered that it is very simple to build and

apply, that estimating its parameters is simple,

that learning occurs quickly even on extremely

big datasets, and that, when compared to other

methods, its accuracy is rather excellent. The

end users, however, do not comprehend the

value of such a strategy and do not get a model

that is simple to read and implement.

As a consequence, we display the learning

process's outcomes in a fresh way. Both the

deployment and comprehension of the classifier

are simplified. We discuss several theoretical

facets of the naive bayes classifier in the first

section of this lesson. Next, we use Tanagra to

apply the method on a dataset. We contrast the

outcomes (the model's parameters) with those

from other linear techniques including logistic

regression, linear discriminant analysis, and

linear support vector machines. We see that the

outcomes are quite reliable. This helps to

explain why the strategy performs well when

compared to others. We employ a variety of

tools (Weka 3.6.0, R 2.9.2, Knime 2.1.1, Orange

2.0b, and RapidMiner 4.6.0) on the same dataset

in the second section. Above all, we make an

effort to comprehend the outcomes.

Random Forest

Random forests or random decision forests are

an ensemble learning method for classification,

regression and other tasks that operates by

constructing a multitude of decision trees at

training time. For classification tasks, the output

of the random forest is the class selected by most

trees. For regression tasks, the mean or average

prediction of the individual trees is returned.

Random decision forests correct for decision

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.15, Issue No 2, 2025

885

trees' habit of overfitting to their training set.

Random forests generally outperform decision

trees, but their accuracy is lower than gradient

boosted trees. However, data characteristics can

affect their performance.

The first algorithm for random decision forests

was created in 1995 by Tin Kam Ho[1] using the

random subspace method, which, in Ho's

formulation, is a way to implement the

"stochastic discrimination" approach to

classification proposed by Eugene Kleinberg.

An extension of the algorithm was developed by

Leo Breiman and Adele Cutler, who registered

"Random Forests" as a trademark in 2006 (as of

2019, owned by Minitab, Inc.).The extension

combines Breiman's "bagging" idea and random

selection of features, introduced first by Ho[1]

and later independently by Amit and Geman[13]

in order to construct a collection of decision

trees with controlled variance.

Random forests are frequently used as

"blackbox" models in businesses, as they

generate reasonable predictions across a wide

range of data while requiring little configuration.

SVM

In classification tasks a discriminant machine

learning technique aims at finding, based on an

independent and identically distributed (iid)

training dataset, a discriminant function that can

correctly predict labels for newly acquired

instances. Unlike generative machine learning

approaches, which require computations of

conditional probability distributions, a

discriminant classification function takes a data

point x and assigns it to one of the different

classes that are a part of the classification task.

Less powerful than generative approaches,

which are mostly used when prediction involves

outlier detection, discriminant approaches

require fewer computational resources and less

training data, especially for a multidimensional

feature space and when only posterior

probabilities are needed. From a geometric

perspective, learning a classifier is equivalent to

finding the equation for a multidimensional

surface that best separates the different classes in

the feature space.

SVM is a discriminant technique, and, because it

solves the convex optimization problem

analytically, it always returns the same optimal

hyperplane parameter—in contrast to genetic

algorithms (GAs) or perceptrons, both of which

are widely used for classification in machine

learning. For perceptrons, solutions are highly

dependent on the initialization and termination

criteria. For a specific kernel that transforms the

data from the input space to the feature space,

training returns uniquely defined SVM model

parameters for a given training set, whereas the

perceptron and GA classifier models are

different each time training is initialized. The

aim of GAs and perceptrons is only to minimize

error during training, which will translate into

several hyperplanes’ meeting this requirement.

V. SCREEN SHOTS

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.15, Issue No 2, 2025

886

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.15, Issue No 2, 2025

887

VI. CONCLUSION

An ensemble machine learning approach

including four foundational machine learning

algorithms—Random Forest, Support Vector

Classification, Logistic Regression, and

Multinomial Naïve Bayes—was used in this

study to propose a nature-based bug prediction

component. The model's accuracy is 90.42%.

To improve accuracy, it also makes use of a text

augmentation approach. As a result, the

suggested model's maximum accuracy rose to

96.72%. Six problem categories—Program

Anomaly, GUI, Network or Security,

Configuration, Performance, and Test-Code—

are used by the suggested model to anticipate the

kind of issue. This model will be improved in

future work by adding more problem categories

and suggesting potential fixes for anticipated

issues to save down on maintenance effort.

REFERENCES

[1] M. A. Jamil, M. Arif, N. S. A. Abubakar, and

A. Ahmad, ‘‘Software testing techniques: A

literature review,’’ in Proc. 6th Int. Conf. Inf.

Commun. Technol. Muslim World (ICT4M),

Nov. 2016, pp. 177–182.

[2] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu,

and I. Illahi, ‘‘Deep neural network-based

severity prediction of bug reports,’’ IEEE

Access, vol. 7, pp. 46846–46857, 2019.

[3] W. Wen, ‘‘Using natural language

processing and machine learning techniques to

characterize configuration bug reports: A

study,’’ M.S. thesis, College Eng., Univ.

Kentucky, Lexington, KY, USA, 2017.

[4] J. Polpinij, ‘‘A method of non-bug report

identification from bug reportrepository,’’ Artif.

Life Robot., vol. 26, no. 3, pp. 318–328, Aug.

2021.

[5] S. Adhikarla, ‘‘Automated bug

classification.: Bug report routing,’’M.S. thesis,

Fac. Arts Sci., Dept. Comput. Inf. Sci.,

Linköping Univ.,Linköping, Sweden, 2020.

[6] K. C. Youm, J. Ahn, and E. Lee, ‘‘Improved

bug localization based oncode change histories

and bug reports,’’ Inf. Softw. Technol., vol. 82,

pp. 177–192, Feb. 2017.

[7] N. Safdari, H. Alrubaye, W. Aljedaani, B. B.

Baez, A. DiStasi, and M. W. Mkaouer,

‘‘Learning to rank faulty source files for

dependent bugreports,’’ in Proc. SPIE, vol.

10989, 2019, Art. no. 109890B.

[8] A. Kukkar, R. Mohana, A. Nayyar, J. Kim,

B.-G. Kang, and N. Chilamkurti, ‘‘A novel

deep-learning-based bug severity classification

technique using convolutional neural networks

and random forest with boosting,’’ Sensors, vol.

19, no. 13, p. 2964, Jul. 2019.

[9] A. Aggarwal. (May 2020). Types of Bugs in

Software Testing: 3 Classifications With

Examples. [Online]. Available:

https://www.scnsoft.com/software-testing/types-

of-bugs

[10] A. Kukkar and R. Mohana, ‘‘A supervised

bug report classification with incorporate and

textual field knowledge,’’ Proc. Comput. Sci.,

vol. 132, pp. 352–361, Jan. 2018.

[11] A. F. Otoom, S. Al-jdaeh, and M. Hammad,

‘‘Automated classification of software bug

reports,’’ in Proc. 9th Int. Conf. Inf. Commun.

Manage., Aug. 2019, pp. 17–21.

[12] P. J. Morrison, R. Pandita, X. Xiao, R.

Chillarege, and L. Williams, ‘‘Are

vulnerabilities discovered and resolved like

http://www.scnsoft.com/software-testing/types-

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.15, Issue No 2, 2025

888

other defects?’’ Empirical Softw. Eng., vol. 23,

no. 3, pp. 1383–1421, Jun. 2018.

[13] F. Lopes, J. Agnelo, C. A. Teixeira, N.

Laranjeiro, and J. Bernardino, ‘‘Automating

orthogonal defect classification using machine

learning algorithms,’’ Future Gener. Comput.

Syst., vol. 102, pp. 932–947, Jan. 2020.

[14] T. Hirsch and B. Hofer, ‘‘Root cause

prediction based on bug reports,’’ in Proc. IEEE

Int. Symp. Softw. Rel. Eng. Workshops

(ISSREW), Oct. 2020, pp. 171–176.

[15] Q. Umer, H. Liu, and I. Illahi, ‘‘CNN-based

automatic prioritization of bug reports,’’ IEEE

Trans. Rel., vol. 69, no. 4, pp. 1341–1354, Dec.

2020.

[16] H. Bani-Salameh, M. Sallam, and B. Al

Shboul, ‘‘A deep-learning-based bug priority

prediction using RNN-LSTM neural,’’ e-Inform.

Softw. Eng. J., vol. 15, no. 1, pp. 1–17, 2021.

[17] Ö. Köksal and B. Tekinerdogan,

‘‘Automated classification of unstructured

bilingual software bug reports: An industrial

case study research,’’ Appl. Sci., vol. 12, no. 1,

p. 338, Dec. 2021.

[18] B. Alkhazi, A. DiStasi, W. Aljedaani, H.

Alrubaye, X. Ye, and M. W. Mkaouer,

‘‘Learning to rank developers for bug report

assignment,’’ Appl. Soft Comput., vol. 95, Oct.

2020, Art. no. 106667.

[19] L. Jonsson, M. Borg, D. Broman, K.

Sandahl, S. Eldh, and P. Runeson, ‘‘Automated

bug assignment: Ensemble-based machine

learning in largescale industrial contexts,’’

Empirical Softw. Eng., vol. 21, no. 4, pp. 1533–

1578, Aug. 2016.

[20] X. Ye, R. Bunescu, and C. Liu, ‘‘Learning

to rank relevant files for bug reports using

domain knowledge,’’ in Proc. 22nd

ACMSIGSOFT Int. Symp. Found. Softw. Eng.,

Nov. 2014, pp. 689–699.

[21] Y. Tian, D. Wijedasa, D. Lo, and C. Le

Goues, ‘‘Learning to rank for bug report

assignee recommendation,’’ in Proc. IEEE 24th

Int. Conf. Program Comprehension (ICPC), May

2016, pp. 1–10.

[22] D. Devaiya, Castr: AWeb-Based Tool for

Creating Bug Report Assignment

Recommenders. Lethbridge, AB, Canada: Univ.

Lethbridge, 2019.

[23] M. Alenezi, S. Banitaan, and M. Zarour,

‘‘Using categorical features in mining bug

tracking systems to assign bug reports,’’ 2018,

arXiv:1804.07803.

[24] H. A. Ahmed, N. Z. Bawany, and J. A.

Shamsi, ‘‘CaPBug-a framework for automatic

bug categorization and prioritization using NLP

and machine learning algorithms,’’ IEEE

Access, vol. 9, pp. 50496–50512, 2021.

[25] R.-M. Karampatsis and C. Sutton, ‘‘How

often do single-statement bugs occur?: The

ManySStuBs4J dataset,’’ in Proc. 17th Int. Conf.

Mining Softw. Repositories, Jun. 2020, pp. 573–

577, doi: 10.1145/3379597.3387491.

