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ABSTRACT 

Due to its significance in fixing the defects 

found in software testing, the maintenance 

process of software systems has drawn the 

attention of researchers in software development 

systems. BRs include information such as the 

bug's description, status, reporter, assignee, 

priority, and severity, among other details. 

Because the quantity of BRs grows 

exponentially, personally analysing them all to 

find system problems becomes an arduous and 

time-consuming ordeal, which is the primary 

challenge of this approach. Consequently, it is 

advisable to use an automated solution. The 

majority of the ongoing research is devoted to 

automating this process from various angles, 

such as determining the bug's importance or 

severity. The flaw, however, is a multi-class 

categorisation challenge, and they failed to 

account for this. This study presents a novel 

prediction model that can analyse BRs and 

accurately forecast the bug's existence, therefore 

resolving the issue. A combination of machine 

learning and natural language processing (NLP) 

is used to build an ensemble algorithm in the 

suggested model. An open-source dataset for 

two online software bug repositories (Eclipse 

and Mozilla) is used to mimic the suggested 

paradigm. This dataset has six categories: 

Program Anomaly, GUI, Network or Security, 

Configuration, Performance, and Test-Code. 

With an accuracy of 90.42% without text 

augmentation and 96.72% with text 

augmentation, the suggested model outperforms 

the majority of current models in the 

simulations. 

I. INTRODUCTION 

The purpose of testing in software engineering is 

to determine whether a system satisfies the 

criteria specified by the stakeholders. This 

assessment process includes looking for errors 

or failures to satisfy these objectives [1]. This 

procedure ensures that any issues found after 

testing has ended are addressed during the 

maintenance period. Furthermore, software 

developers are more likely to deploy flawed 

software as the product's complexity and size 

grow [2], and the likelihood of errors in software 

projects increases. As a result, consumers 

document the issues they've encountered [2]. 

When software has a defect that causes it to act 

improperly or provide inaccurate results, it is 

called a bug [3]. The reporter's comments are 

sent to the BTS via a bug report. The Eclipse 

repository contains sample problem reports, as 

seen in Figure 1. 1 There are many pieces of 

information that go into a bug report. These 

include the problem's ID, its status (closed or 

opened), a description of the issue, the program 

involved, details on how to recreate the bug, 

who reported the bug, and the developer 

responsible for fixing it [4]. 

One way to look at a bug report is as a conduit 

for communicating the issue to the programmers 

working on the solution [5]. After receiving a 

problem report, the developer follows a certain 

procedure known as the bug management 

process [6] to fix the issue. When consumers 

encounter an issue with a published software 

product and file a complaint to the bug 

management system, this procedure begins. 

Developers are then tasked with investigating 

this problem report.  When a developer 
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discovers the source and location of a defect 

before other developers do, they are the ones 

who repair it. Following the bug's resolution, 

the tester verifies that the problem has not 

resurfaced by checking the bug scenario. If it 

hasn't, the status of the bug report is updated to 

Verified. At long last, the reporter gets a notice 

[6]. 

 

There are several stages that make up a software 

bug's life cycle. Hence, the bug report life cycle 

is shown in Figure 2. According to this 

diagram, there are three stages to a bug's life 

cycle: management, triage, and localisation. 

From the moment a user reports an issue until 

the developer is assigned, everything that 

happens during this period is known as bug 

management. next the prioritisation and 

assignment of appropriate developers to fix 

submitted reports, the next process is bug triage. 

Phase three, bug localisation, is responsible for 

transitioning the bug status from resolved to 

verified and finally closed [7]. The exponential 

growth in the volume of reported bugs is the 

biggest obstacle to overcome throughout this life 

cycle since handling them manually is a 

painstaking, complicated, and time-consuming 

process [8]. To solve this problem, researchers 

sort the reports into three primary groups, each 

with its own set of subgroups [9], and then 

extract relevant data to help speed up and 

simplify the maintenance step. These types of 

problem reports are sorted according to priority, 

severity, and kind [9]. The majority of research 

sorts reported bugs according to priority or 

severity. 

 

This research's literature study reveals that 

different classification algorithms categorise bug 

reports based on different criteria; nonetheless, 

there is a dearth of highly accurate bug 

classification models that are based on nature. 

So, to fill this need, this research introduces an 

ensemble machine learning approach for bug 

reporting that is based on nature for bug 

prediction. 

 

The goal of this study is to automate the process 

of predicting the sorts of bugs in software 

systems via the use of natural language 

processing (NLP), machine learning (ML), and 

text mining methods. Instead of spending time 

manually locating bugs, the model may 

accomplish it quickly during the maintenance 

phase by using bug localisation methods. Figure 

3 shows a high-level perspective of how a bug 

report is used to anticipate future issues. 

II. LITERATURE SURVEY 

 

"Software testing techniques: A literature 

review," by M. A. Jamil, M. Arif, N. S. A. 

Abubakar, and A. Ahmad, 

 

Quality assurance of created software has 

reached new heights due to the rising complexity 

of modern software applications and the intense 

competition in the market. Given the 

importance of software testing both before and 

after development, it is imperative that the 

Software Development Lifecycle include more 

effective and efficient procedures and 

approaches to ensure quality software testing. 

The goal of this article is to talk about current 

and new testing methods for better quality 

assurance. 

 

The "Deep neural network-based severity 

prediction of bug reports" was written by W. Y. 

Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. 

Illahi. 

 

The maintenance phase is a crucial part of 

developing software. In order to fix software 

issues, developers use issue tracking systems. 

Such issue tracking systems allow users to report 

issues and assign severity ratings to them. The 

urgency with which an issue should be fixed is 

determined by its severity. Timely resolution of 
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critical problems is facilitated for developers. 

Manual severity evaluation, on the other hand, is 

time-consuming and prone to error. In this 

research, we provide an automated method for 

predicting the severity of bug reports that is 

based on deep neural networks. After collecting 

bug reports, the first step is to preprocess the 

text using natural language processing 

algorithms. Our second step is to give each bug 

report a score based on how they felt about it. 

Next, we construct a vector for every bug report 

that has been preprocessed. Finally, a classifier 

based on a deep neural network is used to 

estimate the severity of each bug report. This 

classifier is fed the created vector together with 

the emotion score of each report. Additionally, 

we assess the suggested method using bug report 

history data. The cross-product findings seem 

like the suggested method beats the state-of-the- 

art methods. It enhances the f-measure by an 

average of 7.90%. 

 

"A technique of non-bug report identification 

from bug report repository," by J. Polpinij 

(2013) Artif. Robot for Life 

 

Studies on bug reports often deal with the 

problem of misclassification, which occurs when 

non-bug reports are filtered out of the repository 

after being identified. The time and effort spent 

triaging and fixing issues increases as a result of 

having to filter out irrelevant complaints, which 

in turn loses time in discovering real bug reports. 

Consequently, this matter has been thoroughly 

investigated and is discussed below. In order to 

address this issue, this research suggests a way 

to automatically detect reports that do not 

include bugs in the bug report repository by 

using classification algorithms. Here, three 

things are taken into account. To begin, 

unigram and CamelCase are used as bug report 

features, with CamelCase words being utilised 

for feature expansion. We then analyse five 

different word weighting strategies to find the 

one that works best for this job. One class 

support vector machine (SVM) based on 

Schölkopf technique, binary-class support vector 

machine (SVM), and support vector data 

description (SVDD) are the major methods used 

for modelling non-bug report identifiers. 

Following recall, precision, and F1 testing, the 

results show that the bug report repository can 

efficiently identify reports that do not include 

bugs. After comparing our results to those of 

other prominent research, our findings may be 

considered acceptable. Specifically, we found 

that the Scölkopf approach and SVDD methods 

performed the best when using non-bug report 

IDs with tf-igm and modified tf-icf weighting 

schemes. 

 

S. Adhikarla, "Bug report routing using 

automated bug classification," Juris Doctor 

thesis, Faculty of Arts and Sciences, Department 

of Computer Science, Linköping University, 

Linköping, Sweden, 2020. 

 

As software technology advances, businesses 

increasingly look to automated solutions as a 

means to save costs and increase efficiency. The 

software business has seen enormous 

development in automated solutions, thanks to 

the substantial machine learning research that 

has supported them. While there has been a lot 

of study into automated bug categorisation, there 

is always a need for more accurate approaches 

that take into account the newly acquired data. 

After reading the defect report, an automatic bug 

classifier will determine which department or 

individual is responsible for fixing the issue. 

 

Typically, a bug report will include an 

unstructured text box where the issue may be 

explained in depth. The topic of data extraction 

from these types of text fields has been 

extensively studied. In order to extract two 

characteristics from the bug report's unstructured 

text fields, this thesis use a topic modelling 
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approach called Latent Dirichlet Allocation 

(LDA) and a numerical statistic called Term 

Frequency - Inverse Document Frequency (TF- 

IDF). By merging the TF-IDF and LDA 

features, a third set of features was generated. 

Over the course of this thesis, the data utilised 

undergoes a transformation in its class 

distribution. As a feature, the age of the bug 

report was incorporated to examine the influence 

of time on the prediction. Along with the LDA 

and TF-IDF characteristics, this feature's 

significance was investigated in this research. 

 

Three distinct classification models—DO- 

probit, dense neural networks, and multinomial 

logistic regression—were trained using these 

produced feature vectors as predictors. The 

accuracy and F1-score of the classifiers' 

predictions for which department should address 

an issue were assessed. Predictions made by a 

Support Vector Machine (SVM) with a linear 

kernel served as the reference point for this 

comparison. 

III. SYSTEM ANALYSIS AND DESIGN 

EXISTING SYSTEM 

Kukkar and Mohana [10] address the issue of 

misclassification of bug reports—which impacts 

the overall effectiveness of the prediction 

process—by using text mining, natural language 

processing, and machine learning approaches to 

categorise bug and non-bug reports. Bigram and 

TF-IDF are used for feature selection in this 

model. But as the dataset changes, the KNN 

algorithm's performance in this model also 

changes. 

 

When it comes to bug reporting, some 

researchers have various criteria. In [11], 

researchers use support vector machines 

(SVMs), naïve bayes (NBs), and random trees 

(RTs) as machine learning techniques to 

categorise newly reported bugs as either 

perfective (requiring significant upkeep) or 

corrective (requiring defect correction). With a 

score of 93.1%, SVM proved to be the most 

accurate method. 

 

A popular model known as Orthogonal Defect 

Classification (ODC) was established by 

researchers to aid in the software engineering 

process [12]. Several analytical approaches for 

test process analysis and software development 

are available in ODC, which contains eight 

orthogonal properties to characterise software 

problems [51]. Using ODC, we may extract 

useful information from faults, which aids in 

software engineering process diagnostics, and 

gives us new insights [13]. To categorise bug 

reports in accordance with ODC, the writers in 

[13] use machine learning methods. A total of 

4096 bug reports tagged with ODC were used in 

their investigation. They do, however, come to 

the conclusion that bug reports alone are 

insufficient for automating the ODC properties. 

 

Hirsch and Hofer [14] used three categories— 

concurrency, memory, and semantic bugs—to 

categorise each newly reported problem. Using 

369 reports of bugs, they achieved a maximum 

mean recall of 0.72 and a precision of 0.74. 

 

DISADVANTAGES 

• An existing system is not hybrid deep 

learning detection policy to improve the 

efficiency and effectiveness of Bug 

Report Generation. 

• An existing system never used Nature- 

Based Ensemble Machine Learning Bug 

Prediction Model which is more 

accurate and efficient. 

PROPOSED SYSTEM 

• It offers a review of many foundational ML 

techniques for automated categorisation of bug 

reports based on nature. 

• It suggests a method for automatically 

predicting bugs based on nature using bug 

reports and an ensemble machine learning 

methodology. 
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• The suggested approach incorporates a text 

augmentation strategy for nature-based issue 

prediction using bug reports. As far as we are 

aware, this is the first ensemble machine 

learning method to use a text augmentation 

methodology to forecast the kind of defects in 

bug reports. 

• The findings of the proposed technique's 

assessment on a benchmark dataset indicate that 

the ensemble machine learning approach is 

effective in predicting bugs based on nature 

from reports of bugs. 

Advantages 

• The proposed algorithm aims to enhance 

nature-based bug prediction by using 

several machine learning (ML) base 

classifiers and training them using a 

benchmark dataset. 

• The proposed algorithm integrates 

machine learning, NLP, and text-mining 

techniques. Their algorithm uses 504 

bug reports and classifies them into four 

classes: assignment/initialization, 

external interface, internal interface, and 

other. This model achieved 73.70% of 

accuracy. 

SYSTEM ARCHITECTURE 
 

IV. IMPLEMENTATION 

Modules 

Service Provider 

A valid username and password are required for the 

Service Provider to access this module. Following a 

successful login, he will have access to many activities, 

including the ability to browse data sets and perform 

train and test. Check out the Bar Chart for Trained and 

Tested Accuracy, Check Out the Results for Trained and 

Tested Accuracy, See the Type of Bug Report, the Ratio 

of Bug Reports, Download Data Sets for Prediction, and 

See the Results of the Ratio of Bug Reports, See Who Is 

Online From Afar. 

View and Authorize Users 

The admin can get a complete rundown of all 

registered users in this section. Here, the 

administrator may see the user's information 

(name, email, and address) and grant them 

access. 

Remote User 

A total of n users are present in this module. 

Before beginning any actions, the user needs 

register. Following registration, the user's 

information will be entered into the database. 

Following a successful registration, he must use 

his password and authorised user name to log in. 

Following a successful login, the user will be 

able to see their profile, predict the kind of bug 

report, and register and log in. 

ALGORITHM 

Logistic regression Classifiers 

The relationship between a collection of 

independent (explanatory) factors and a 

categorical dependent variable is examined 

using logistic regression analysis. When the 

dependent variable simply has two values, like 0 

and 1 or Yes and No, the term logistic regression 

is used. When the dependent variable contains 

three or more distinct values, such as married, 

single, divorced, or widowed, the technique is 

sometimes referred to as multinomial logistic 

regression. While the dependent variable's data 
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type differs from multiple regression's, the 

procedure's practical application is comparable. 

When it comes to categorical-response variable 

analysis, logistic regression and discriminant 

analysis are competitors. Compared to 

discriminant analysis, many statisticians believe 

that logistic regression is more flexible and 

appropriate for modelling the majority of 

scenarios. This is due to the fact that, unlike 

discriminant analysis, logistic regression does 

not presume that the independent variables are 

regularly distributed. 

Both binary and multinomial logistic regression 

are calculated by this software for both category 

and numerical independent variables. Along 

with the regression equation, it provides 

information on likelihood, deviance, odds ratios, 

confidence limits, and quality of fit. It does a 

thorough residual analysis that includes 

diagnostic residual plots and reports. In order to 

find the optimal regression model with the 

fewest independent variables, it might conduct 

an independent variable subset selection search. 

It offers ROC curves and confidence intervals on 

expected values to assist in identifying the 

optimal classification cutoff point. By 

automatically identifying rows that are not 

utilised throughout the study, it enables you to 

confirm your findings. 

Naïve Bayes 

The supervised learning technique known as the 

"naive bayes approach" is predicated on the 

straightforward premise that the existence or 

lack of a certain class characteristic has no 

bearing on the existence or nonexistence of any 

other feature. 

However, it seems sturdy and effective in spite 

of this. It performs similarly to other methods of 

guided learning. Numerous explanations have 

been put forward in the literature. We 

emphasise a representation bias-based 

explanation in this lesson. Along with logistic 

regression, linear discriminant analysis, and 

linear SVM (support vector machine), the naive 

bayes classifier is a linear classifier. The 

technique used to estimate the classifier's 

parameters (the learning bias) makes a 

difference. 

Although the Naive Bayes classifier is 

commonly used in research, practitioners who 

want to get findings that are useful do not utilise 

it as often. On the one hand, the researchers 

discovered that it is very simple to build and 

apply, that estimating its parameters is simple, 

that learning occurs quickly even on extremely 

big datasets, and that, when compared to other 

methods, its accuracy is rather excellent. The 

end users, however, do not comprehend the 

value of such a strategy and do not get a model 

that is simple to read and implement. 

As a consequence, we display the learning 

process's outcomes in a fresh way. Both the 

deployment and comprehension of the classifier 

are simplified. We discuss several theoretical 

facets of the naive bayes classifier in the first 

section of this lesson. Next, we use Tanagra to 

apply the method on a dataset. We contrast the 

outcomes (the model's parameters) with those 

from other linear techniques including logistic 

regression, linear discriminant analysis, and 

linear support vector machines. We see that the 

outcomes are quite reliable. This helps to 

explain why the strategy performs well when 

compared to others. We employ a variety of 

tools (Weka 3.6.0, R 2.9.2, Knime 2.1.1, Orange 

2.0b, and RapidMiner 4.6.0) on the same dataset 

in the second section. Above all, we make an 

effort to comprehend the outcomes. 

Random Forest 

Random forests or random decision forests are 

an ensemble learning method for classification, 

regression and other tasks that operates by 

constructing a multitude of decision trees at 

training time. For classification tasks, the output 

of the random forest is the class selected by most 

trees. For regression tasks, the mean or average 

prediction of the individual trees is returned. 

Random decision forests correct for decision 
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trees' habit of overfitting to their training set. 

Random forests generally outperform decision 

trees, but their accuracy is lower than gradient 

boosted trees. However, data characteristics can 

affect their performance. 

The first algorithm for random decision forests 

was created in 1995 by Tin Kam Ho[1] using the 

random subspace method, which, in Ho's 

formulation, is a way to implement the 

"stochastic discrimination" approach to 

classification proposed by Eugene Kleinberg. 

An extension of the algorithm was developed by 

Leo Breiman and Adele Cutler, who registered 

"Random Forests" as a trademark in 2006 (as of 

2019, owned by Minitab, Inc.).The extension 

combines Breiman's "bagging" idea and random 

selection of features, introduced first by Ho[1] 

and later independently by Amit and Geman[13] 

in order to construct a collection of decision 

trees with controlled variance. 

Random forests are frequently used as 

"blackbox" models in businesses, as they 

generate reasonable predictions across a wide 

range of data while requiring little configuration. 

SVM 

In classification tasks a discriminant machine 

learning technique aims at finding, based on an 

independent and identically distributed (iid) 

training dataset, a discriminant function that can 

correctly predict labels for newly acquired 

instances. Unlike generative machine learning 

approaches, which require computations of 

conditional probability distributions, a 

discriminant classification function takes a data 

point x and assigns it to one of the different 

classes that are a part of the classification task. 

Less powerful than generative approaches, 

which are mostly used when prediction involves 

outlier detection, discriminant approaches 

require fewer computational resources and less 

training data, especially for a multidimensional 

feature space and when only posterior 

probabilities are needed. From a geometric 

perspective, learning a classifier is equivalent to 

finding the equation for a multidimensional 

surface that best separates the different classes in 

the feature space. 

SVM is a discriminant technique, and, because it 

solves the convex optimization problem 

analytically, it always returns the same optimal 

hyperplane parameter—in contrast to genetic 

algorithms (GAs) or perceptrons, both of which 

are widely used for classification in machine 

learning. For perceptrons, solutions are highly 

dependent on the initialization and termination 

criteria. For a specific kernel that transforms the 

data from the input space to the feature space, 

training returns uniquely defined SVM model 

parameters for a given training set, whereas the 

perceptron and GA classifier models are 

different each time training is initialized. The 

aim of GAs and perceptrons is only to minimize 

error during training, which will translate into 

several hyperplanes’ meeting this requirement. 

V. SCREEN SHOTS 
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VI. CONCLUSION 

An ensemble machine learning approach 

including four foundational machine learning 

algorithms—Random Forest, Support Vector 

Classification, Logistic Regression, and 

Multinomial Naïve Bayes—was used in this 

study to propose a nature-based bug prediction 

component. The model's accuracy is 90.42%. 

To improve accuracy, it also makes use of a text 

augmentation approach. As a result, the 

suggested model's maximum accuracy rose to 

96.72%. Six problem categories—Program 

Anomaly, GUI, Network or Security, 

Configuration, Performance, and Test-Code— 

are used by the suggested model to anticipate the 

kind of issue. This model will be improved in 

future work by adding more problem categories 

and suggesting potential fixes for anticipated 

issues to save down on maintenance effort. 

REFERENCES 

[1] M. A. Jamil, M. Arif, N. S. A. Abubakar, and 

A. Ahmad, ‘‘Software testing techniques: A 

literature review,’’ in Proc. 6th Int. Conf. Inf. 

Commun. Technol. Muslim World (ICT4M), 

Nov. 2016, pp. 177–182. 

[2] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, 

and I. Illahi, ‘‘Deep neural network-based 

severity prediction of bug reports,’’ IEEE 

Access, vol. 7, pp. 46846–46857, 2019. 

[3] W. Wen, ‘‘Using natural language 

processing and machine learning techniques to 

characterize configuration bug reports: A 

study,’’ M.S. thesis, College Eng., Univ. 

Kentucky, Lexington, KY, USA, 2017. 

[4] J. Polpinij, ‘‘A method of non-bug report 

identification from bug reportrepository,’’ Artif. 

Life Robot., vol. 26, no. 3, pp. 318–328, Aug. 

2021. 

[5] S. Adhikarla, ‘‘Automated bug 

classification.: Bug report routing,’’M.S. thesis, 

Fac. Arts Sci., Dept. Comput. Inf. Sci., 

Linköping Univ.,Linköping, Sweden, 2020. 

[6] K. C. Youm, J. Ahn, and E. Lee, ‘‘Improved 

bug localization based oncode change histories 

and bug reports,’’ Inf. Softw. Technol., vol. 82, 

pp. 177–192, Feb. 2017. 

[7] N. Safdari, H. Alrubaye, W. Aljedaani, B. B. 

Baez, A. DiStasi, and M. W. Mkaouer, 

‘‘Learning to rank faulty source files for 

dependent bugreports,’’ in Proc. SPIE, vol. 

10989, 2019, Art. no. 109890B. 

[8] A. Kukkar, R. Mohana, A. Nayyar, J. Kim, 

B.-G. Kang, and N. Chilamkurti, ‘‘A novel 

deep-learning-based bug severity classification 

technique using convolutional neural networks 

and random forest with boosting,’’ Sensors, vol. 

19, no. 13, p. 2964, Jul. 2019. 

[9] A. Aggarwal. (May 2020). Types of Bugs in 

Software Testing:  3 Classifications With 

Examples.  [Online]. Available: 

https://www.scnsoft.com/software-testing/types- 

of-bugs 

[10] A. Kukkar and R. Mohana, ‘‘A supervised 

bug report classification with incorporate and 

textual field knowledge,’’ Proc. Comput. Sci., 

vol. 132, pp. 352–361, Jan. 2018. 

[11] A. F. Otoom, S. Al-jdaeh, and M. Hammad, 

‘‘Automated classification of software bug 

reports,’’ in Proc. 9th Int. Conf. Inf. Commun. 

Manage., Aug. 2019, pp. 17–21. 

[12] P. J. Morrison, R. Pandita, X. Xiao, R. 

Chillarege, and L. Williams, ‘‘Are 

vulnerabilities discovered and resolved like 

http://www.scnsoft.com/software-testing/types-


IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501 

 Vol.15, Issue No 2, 2025 

888 

 

 

other defects?’’ Empirical Softw. Eng., vol. 23, 

no. 3, pp. 1383–1421, Jun. 2018. 

[13] F. Lopes, J. Agnelo, C. A. Teixeira, N. 

Laranjeiro, and J. Bernardino, ‘‘Automating 

orthogonal defect classification using machine 

learning algorithms,’’ Future Gener. Comput. 

Syst., vol. 102, pp. 932–947, Jan. 2020. 

[14] T. Hirsch and B. Hofer, ‘‘Root cause 

prediction based on bug reports,’’ in Proc. IEEE 

Int. Symp. Softw. Rel. Eng. Workshops 

(ISSREW), Oct. 2020, pp. 171–176. 

[15] Q. Umer, H. Liu, and I. Illahi, ‘‘CNN-based 

automatic prioritization of bug reports,’’ IEEE 

Trans. Rel., vol. 69, no. 4, pp. 1341–1354, Dec. 

2020. 

[16] H. Bani-Salameh, M. Sallam, and B. Al 

Shboul, ‘‘A deep-learning-based bug priority 

prediction using RNN-LSTM neural,’’ e-Inform. 

Softw. Eng. J., vol. 15, no. 1, pp. 1–17, 2021. 

[17] Ö. Köksal and B. Tekinerdogan, 

‘‘Automated classification of unstructured 

bilingual software bug reports: An industrial 

case study research,’’ Appl. Sci., vol. 12, no. 1, 

p. 338, Dec. 2021. 

[18] B. Alkhazi, A. DiStasi, W. Aljedaani, H. 

Alrubaye, X. Ye, and M. W. Mkaouer, 

‘‘Learning to rank developers for bug report 

assignment,’’ Appl. Soft Comput., vol. 95, Oct. 

2020, Art. no. 106667. 

[19] L. Jonsson, M. Borg, D. Broman, K. 

Sandahl, S. Eldh, and P. Runeson, ‘‘Automated 

bug assignment: Ensemble-based machine 

learning in largescale industrial contexts,’’ 

Empirical Softw. Eng., vol. 21, no. 4, pp. 1533– 

1578, Aug. 2016. 

[20] X. Ye, R. Bunescu, and C. Liu, ‘‘Learning 

to rank relevant files for bug reports using 

domain knowledge,’’ in Proc. 22nd 

ACMSIGSOFT Int. Symp. Found. Softw. Eng., 

Nov. 2014, pp. 689–699. 

[21] Y. Tian, D. Wijedasa, D. Lo, and C. Le 

Goues, ‘‘Learning to rank for bug report 

assignee recommendation,’’ in Proc. IEEE 24th 

Int. Conf. Program Comprehension (ICPC), May 

2016, pp. 1–10. 

[22] D. Devaiya, Castr: AWeb-Based Tool for 

Creating Bug Report Assignment 

Recommenders. Lethbridge, AB, Canada: Univ. 

Lethbridge, 2019. 

[23] M. Alenezi, S. Banitaan, and M. Zarour, 

‘‘Using categorical features in mining bug 

tracking systems to assign bug reports,’’ 2018, 

arXiv:1804.07803. 

[24] H. A. Ahmed, N. Z. Bawany, and J. A. 

Shamsi, ‘‘CaPBug-a framework for automatic 

bug categorization and prioritization using NLP 

and machine learning algorithms,’’ IEEE 

Access, vol. 9, pp. 50496–50512, 2021. 

[25] R.-M. Karampatsis and C. Sutton, ‘‘How 

often do single-statement bugs occur?: The 

ManySStuBs4J dataset,’’ in Proc. 17th Int. Conf. 

Mining Softw. Repositories, Jun. 2020, pp. 573– 

577, doi: 10.1145/3379597.3387491. 


